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Abstract—A theory is presented 1o describe the motion of vapour bubbles growing at a nucleation site
in a uniformly superheated liguid. By incorporating the classical theory for spherical phase growth, the
equations of translatory motion were solved, enabling the radius and position of the bubble to be calcu-

lated as a function of time.

The theoretical results are compared with experiments using boiling water and acetic acid. For water
the bubble radius was found to vary as (time)? rather than (time)* as in the theory, whereas the data for
acetic acid were in close agreement with the theory. The predicted values of the departure time of the

bubbles were in good agreement with the data, especially at the larger superheats,

NOMENCLATURE
a, radius of bubble;
A4, growth constant, equation {17);
B, growth constant, equation (20);
< 2s;
Cq, C,, specific heat of gas, liquid;
D, diameter of bubble;
iA frequency of bubbling;
k, thermal conductivity ;
L, iatent heat of vaporization ;
ro, radius of nucleation cavity ;
Re, 2alU /v, Reynolds number;
s, distance travelled by centre of
bubble;
¢ time;
tos timeat whicha = ry;
ty fictitious time in equation (20);
(A temperature ;
U, velocity of centre of bubble ;
Weys  2a,U2p. /o, Weber number at de-
parture conditions ;

 Present address: C.OP.P.E., Federal University of
Rio de Janeiro, Brazil.

2, thermal diffusivity;

B growth constant, equation (10);

¥, kinematic viscosity ;

Pg, 1. density ofgas, liquid ;

o, surface tension ;

T, t+ L.

Subscripts

d, evaluated at end of departure stage ;

*, evaluated at end of growing stage.
INTRODUCTION

THE PREDICTION of the bubbling frequency and
the departure diameter is of central importance
in the theoretical study of nucleate boiling.
This is because the heat flux from a hot surface
is related to the volumetric flowrate of vapour
formed, which is proportional to fD3. A number
of authors [1-5] have proposed empirical or
semi-empirical equations relating f and D, but
as has been pointed out by Ivey [5] there is
considerable divergence not only in the correla-
tions but also in the experimental data. Other
attempts include those of Fritz [6], which
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involved a balance of buoyancy and surface
tension forces at breakoff, and Witze et al. [7]
who neglected surface tension and established
the breakoff condition as a balance between
liquid inertia and buoyancy. As will be shown,
both of these approaches are over-simplifica-
tions.

The problem of nucleate pool boiling as
treated by these authors is complicated by the
non-uniformity of the temperature field, and the
transfer of heat from a wall to the liquid. In this
work we treat the simpler case of boiling at a
nucleation site in a uniformly superheated liquid.
Here it is permissible to regard the bubble as
growing in an infinite liquid, initially at a
uniform temperature. Thus the energy and
momentum equations can be solved separately,
with appropriate simplifications, to yield the
bubble radius and distance from the initial
position as functions of time. Obviously there
are certain differences between this problem and
the pool boiling case. However, simplifications
on the heat transfer side enable much greater
insight into the fluid mechanics of the problem.

An essential part of the theoretical model is
the determination of the radius a(r) of a bubble
growing at a point in a uniformly superheated
liquid. This problem was first attacked by
Bosnjakovi¢ [8], and extended and refined by
Forster and Zuber [9] and Plesset and Zwick
[10]. It was assumed that bubble growth is
limited by heat transfer to the phase interface,
both conductive and convective terms being
important. Scriven [11] has shown that the
results of these workers are valid, providing the
growth rate and the dimensionless superheat
are sufficiently large. Experimental investiga-
tions into the validity of these results have been
conducted by Dergarabedian [12] and Darby
[13]. In both these works the bubbles were
observed while in free rise so that it was not
possible to remove the convective effects due
to the relative motion of the bubbles and the
liquid. In fact, Dergarabedian found that the
bubble radius depended on t*, while Darby
found better agreement with t¥, Kosky [14] also
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found the t* variation. However, in view of the
uncertainty on this point, we have used the
theoretical work as a guide. Where the theory
has been found to be inadequate we have
resorted to curve-fitting of the experimental
measurements,

THEORY

Consider a spherical bubble growing at a
nucleation site on a horizontal plate in a
uniformly superheated liquid. It is assumed that
bubble formation takes place in three stages:
expansion, transition and waiting. The position
of the bubble relative to the nucleation site is
shown foreachstagein Fig. 1.
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(@) During the growing or expansion stage
the spherical bubble grows by evaporation of
the liquid. The inertial reaction of the liquid and
the surface tension force exceed the upward
buoyancy force so the bubble remains attached
to the cavity. The centre of the bubble moves
upward with velocity equal to the rate of increase
of the bubble-radius.

(b} Transition stage. With increasing time the
buoyvancy overcomes the downward forces and
the bubble rises free from the cavity, although
still attached by a short neck. The bubble, while
continuing to grow by evaporation, undergoes
a sudden acceleration at the onset of this stage.
The instant in time when the transition stage
commences will be called the transition time.
The stage ends when the neck breaks and the
bubble rises free.
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(¢) The wuiting stage comprises the time from
when the bubble departs to when the next
begins to grow. The duration of this stage is
determined by phenomena in or near the
nucleation site, such as liquid penetration and
evaporation inside the cavity.

In setting up a mathematical description of
the process, it is assumed that single bubbles are
formed and released one at a time and there is
no interaction between successive bubbles.
Viscous effects are neglected, a step which will
be justified Jater, and so the liquid is taken to be
inviscid, incompressible and irrotational. This
enables the velocity fields to be represented by a
velocity potential. Since the density of the gas
vapour is very small it may be assumed that
there are no pressure variations within the
bubble. Thermodynamic equilibrium is posto-
lated at the gas—liquid interface.

In terms of the velocity potential ¢, the equa-
tion of continuity is Laplaces equation, V¢ = 0,
which must be solved with the appropriate
boundary conditions. Since this equation is
linear, we may simply find one solution ¢ to
represent the flow around an expanding sphere,
and another ¢, representing the translatory
motion of a sphere moving with velocity U
normal to a plane wall. In both cases it is
essential to take into account the presence of the
wall. The potential of the total motion ¢ is then
the sum of ¢z and ¢,. Using the method of
images we find
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with ¢ = 25, U = ds/dt, a = da/dt, and s being
the height of the centre of the bubble above the
flat plate. The coordinate system is shown in
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Fig. 2. In (1), terms smaller than a®%/s® have
been neglected since a/s < 1 always.

The pressure distribution in the liquid is given
by Bernoulli’s equation:

P
£=g@w%q2wg(s+rcosﬂ)+——9

pr Ot PL

where P, is the liquid pressure at the level of
the cavity in the absence of motion and g is the

2
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F1aG. 2. The coordinate system.

absolute velocity. By integrating the vertical
component of the pressure over the surface of
the bubble, the force of inertia and buoyancy is
obtained :

atd’s 3a®  3a®
FI = 27tpL{~3—a"t'2* (1 + —Ei‘ + “Eg')
- g‘f. f‘_f ’ 1+ 233
c* \dt =
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a* (da\? 2a°

The first part of this expression represents the
inertial reaction of the liquid, and opposes the
motion of the bubble; the last term arises from
the buoyancy of the bubble.

The other force acting on the bubble is that
of surface tension at the nucleation site. If the
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radius of the nucleation cavity is r,, the resulting
force is

F, = 2nr,. 4)

The equation of motion for the bubble may now
be written:

;dU

4
§7£pGa ar (5)

Since the density g of the vapour is very small,
the right hand side of this equation may be
neglected. Thus we find

F d?
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During the expansion stage, the bubble is, as
it were, pressed down on the flat plate by the
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reaction of the liquid, although still remaining
spherical. Thus s = a, U = a4 and dU/dt = 4,
and the equation of motion simplifies to

145 91 .,, 1o

a® + —ata® + -2z

1929 T 64 pr” 3 @®

where the inequality sign is necessary because
the bubble is not free to move beneath the plate.
However, with increasing time the dominance
of the left-hand side is eroded and the first
stage ends when the two sides become precisely
equal, and the bubble can lift off the plate. From
this time onward the bubble, while still growing,
rises with s > a, and the velocity U must be
found from the general expression [7].

The initial condition for the expansion stage
is that at t =0, a = ay, = r,. Thus bubble
growth is considered to commence when the
radius is equal to the radius of the nucleation
cavity.

Rate of bubble expansion

It is evident from the equations presented
above that the bubble dynamics can be followed
in the expansion and transition stage if @, @ and
d are known as functions of time. For theoretical
predictions we can use the work of Scriven [11]:

a = 2p(ex) 9

3 L (C,—-Cg) !
§ = (R> AT[pL(CL+ = Arﬂ

(10)

These expressions are valid for large values of
the “growth constant” f§ and of the dimension-
less superheat C;AT/L. These conditions have
been strictly satisfied in the experiments reported
here.

Criteria for transition from one stage to the next

During the expansion stage, the distance
travelled by the centre of the bubble is equal to
the bubble radius. Thus

s =a=2a) (11

and
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v=%_a-p(*) (12)
=&t 4T B /"

If there were no buoyancy effect, the rising
velocity would become smaller and smaller as
the bubble expanded. However, with increasing
time the buoyancy does come into play and the
rising velocity of the bubble will start to increase.
At the time ., at which the expansion stage ends
and the transition stage begins, the upward and
downward forces on the bubble come into
equilibrium. It is reasonable to assume that at
this critical time 7, the upward velocity ds/dt
has reached a minimum so that the term in
d3s/dt? is zero. Thus equation (8) becomes:

21 25 ToO 2 4

64 a*a* + ;L_ = §ga*

which yields as a solution:

273Bat 16ry0
- 1 .
T+ = 7569 ( 91pL/34a2) (14

The magnitude of t, is clearly dependent on the
physical properties of the boiling system and
the cavity size. At a given cavity, increasing the
superheating temperature gives a larger f and
a smaller 7. At low superheating temperatures,
the effect of liquid inertia is small compared
with the surface tension in (13), and the solution
simplifies to

(13)

= 3roo
* 7 16p.gBPat

In heterogeneous boiling most of the heat is
transferred from the solid to the liquid during the
time the bubble remains in contact with the hot
wall. The above expressions for 1, are useful in
providing an estimate of this contact time.

To determine the criterion for detachment of
the bubble from the nucleation site resort has
been made to experiment. Observations on the
various systems used indicate that detachment
occurs when

(15)

~ 1-54. (16)
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EXPERIMENTAL

The experimental techniques used in this work
have been developed from those of Dergara-
bedian [12]. A diagrammatic sketch of the
apparatus is shown in Fig. 3. The liquid is heated

/ 2y Reflector

Light
source @

Cu S04 prerree
solution S Nucteation
site
Infra red
4)@/@: lamp
Boiling
vessel
High
speed
camera

FiG. 3. Diagrammatic sketch of apparatus,

in a glass container by two directly opposed
250 W infra-red lamps, controllable through a
Variac transformer. Temperatures were mea-
sured by a mercury-in-glass thermometer, cali-
brated to 0-1°C. The vessel was provided with
an optically flat glass window to remove dis-
tortion of the image of the bubble.

The nucleation cavity was formed on the end
of a glass rod, bent in the form of a U so that
while the rod was suspended from above, the
cavity opening was vertically upward. The
cavity was made by drawing out thick-walled
glass capillary tubing. The cavity radius was
220 y, and its length was 4-6 mm.

The following procedure was carried out
before each experiment was conducted. The
vessel and the cavity rod were cleaned with
chromic acid, washed and dried. The liquid to
be used in the experiment was poured into the
vessel to a level about 6 cm above the glass
window, and heated at the base by an electric
heater. The liquid was boiled for about 20 min
to eliminate dissolved gases and to provoke
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nucleate boiling at nucleation sites on the sides
of the vessel, and especially in the vicinity of the
window. On cooling the liquid to about 10°C
below the boiling point, these cavities filled with
liquid and became inactive. During this boiling
step, the vapour formed was condensed and
returned to the vessel by a glass reflux condenser,

The boiled liquid in its container was then
placed between the two infra-red lamps and
heated at the rate of about 1°C per min, to
ensure a uniform temperature distribution. {This
rate was found by trial, placing one thermometer
near the wall and another at the centreline.)
When the temperature exceeded the boiling
point the artificial nucleation site was immersed
and the heating adjusted to give the required
superheat.
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be used for a(t). The upper limit was imposed to
avoid coalescence between successive bubbles
at or near the point of breakoff.

Photographs of the bubble behaviour were
taken with a Fairchild HS 101 16 mm motion
picture camera of the rotating prism type, in
the range 10002500 frames per s, using Kodak
Plus-X panchromatic film. Accurate timing was
obtained from 100 cps light-marks placed on
the film edge by a pulse generator. The camera
lens system produced x 2 magnification. After
development the films weredisplayed on a motion
picture analyser (Vanguard Instrument Corp.)
which had a x 10 magnification. The vertical
and lateral cross wires could be located with an
accuracy of +0-001 in. Two dimensions were
read: (a) the bubble diameter D = 24, which

Table 1. Properties of water and water vapour

T v,(15) v,(15) L(15) k x 10°(16) C,17) o(18) % 107
0 {cm®/g) {cm¥/g) {cal/g) {cal/em® "C) {cal/g°C)  (dynefom}  {em’is)
100 10435 16730 5391 1-598 1-0076 5885 1-655
102 1-0450 1565-6 5379 1-599 1-0082 5847 1-657
103 1-0458 15150 5372 1-600 1-0085 5829 1-659
104 1-0466 14663 5366 1-601 1-0088 5810 1-661

Table 2. Properties of acetic acid

T p(19)  pc(19) x 10° L(18) k x 10*(20) C,(18) 5 (18) % x 107
Q) (g/cm?) (g/cm®) (g/cm?) {caljcm? °C) (cal/g °C) (dyne;cm) (cm?/s)
llé 09368 315 96-89 3627 0-5787 1810 06677
120 09386 330 9667 3617 0-5806 1791 06654
121 0-9348 341 9656 3612 0-5815 1781 0-6645
122 09335 352 96-45 3607 05824 1771 0-6635
123 09321 363 9635 3-602 0-5834 1762 06624
124 09308 374 96:24 3-598 0-5843 17-52 06616

Two liquids were used, acetic acid (AR.
grade), B.P. 1180°C, and distilled water (B.P.
100-0°C). The levels of superheat at which
experiments were conducted were (a) acetic
acid: 20, 3-0, 40, 50 and 6:0°C and (b) water:
2-0, 3-0 and 4-0°C. The lower limit was mainly
determined by the desire to maintain large
values of the growth constant f, equation {10),
to enable the approximate asymptotic theory to

was the maximum horizontal dimension of the
bubble, and (b) the distance s travelled by the
centre of the bubble. These distances are shown
in Fig. 2. During the time when the bubbles were
attached to the cavity it was observed that they
were very close to spherical in shape except for
the small tail which existed in the transition
stage. However, after breakoff they tended to
be spheroidal, and the dimension D would not
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be appropriate. The behaviour after breakoff
does not concern us here.

The physical data needed in the calculations
are shown in Tables 1 and 2 together with the
source references. In some cases, interpolation
of published figures was necessary. The thermal
diffusivity o = k;/p,C; was calculated from its
constituents.

RESULTS AND DISCUSSION
Bubble growth rates
Measured values of the bubble radius as a
function of time for acetic acid are given in
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Fig. 4. The points are recorded from the initial
bubble size a = r; until the instant of breakoff.
There is an uncertainty of up to 14 x 1073 s
in the determination of the time at which growth
starts, this being the time between successive
frames on the film. The bubble radii are expressed
in dimensionless form (a/r,) for representational
convenience.

Allthe data are well represented by expressions
of the form

a= Att = A(t + ). amn

The broken lines on Fig 4 represent this

;: T 2123 0°C 7]
6t~ O 1000 f.p.s. 0o
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FiG. 4

Bubble radius for acetic acid (B.Pt. 118-0°C). The experimental time

is

measured from the cine frame on which a = r, was first observed.
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equation, with the constants A4, t,, being found by
the method of least squares. Comparisons of (9)
with (17) shows that A4 is related to the theoretical
growth constant f by

A = 2po* (18)

provided the time scale is displaced by ¢4, this
being interpreted as the time taken for the bubble
to grow from zero radius to a = r, that is

to = (ro/2Po*)*. (19)

Table 3 contains values of the experimental
parameters A, t, obtained by curve fitting, and
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aq = ro = 0:022 cm. The data points refer to
bubble growth up to the point of departure. The
error in determining the zero time, at which
a = rg, is about 5-7 x 107 *s.

When the data were fitted to the square-root-
of-time law [17] values of 4 and t, could be
found by the method of least squares. Excellent
agreement was found between the experimental
values of A and the prediction from 4 = 2f«*
as shown in Table 4. However, the values of t,
were all negative, indicating that the assumed
time dependence was incorrect at small times.
The continuous curves in Fig. 5 represent

Table 3. Experimental and theoretical growth parameters for acetic acid (B. Pt. 118°C)

Experimental Theoretical
equation (17)
T A4 to B A = 2Ba* I
(°C) {cm/st) {s) (Scriven [11]) {cmys?) (s)
120 0-258 0-0079 3447 0178 00?5% .
121 0-363 0-0040 5146 0-265 0-0069
122 0-384 0-0024 6830 0-352 0-0039
123 0426 0-0024 8499 0438 00025
124 0532 00022 10:149 0-522 0-0018

also the predicted values from (18) and (19), with
ro = 0022 cm. It is seen that for the largest
superheats the agreement is very good indeed,
while at the smallest AT, the predicted growth
constant is too small. This is also shown in the
solid lines in Fig. 4, where a is calculatéd by the
approximate theory, equations (17)19). For
the smallest AT the predicted radii are about
20 per cent too low, whereas for AT = 4, 5 and
6°C, the agreement is very good.

It can be seen that for the largest superheat near
the instant of release from the cavity, the data
points deviate slightly from the t* curve with
a slightly increased slope. This is possibly a
result of the translatory motion (Tokuda et al.
[23]).

The results for boiling water are given in
Fig. 5, for superheats of 2, 3 and 4°C. The initial
bubble radius is the same as that for acetic acid,

a = A(t + to)f with the experimentally deter-
mined 4 and t,. For computational purposes
it was found that the data could be much better
represented by

a = B(t + tp)? (20)

where B, ty were found by curve fitting, and are
given in Table 4. Equation (20) with appropriate
constraints is shown in Fig. 5 by the broken
lines. The time exponent greater than 4 has also
been reported in earlier experiments [13, 22].

Translational motion of the centre of the bubble

Knowing the rate of bubble growth with time,
it is possible to solve the equations of motion to
find s(¢) and the criteria for termination of the
expansion stage, and the moment of detachment
of the bubble. During the expansion stage the
solutions for a = s may be found from {17) and
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Table 4. Experimental and theoretical growth parameters for water (B. Pt. 100°C)

Experimental Experimental
Theoretical equation (17) equation (20)
T B A to A to B tp
(8] [113 (cmy/s?) (s) (cmys*) (s) (cm/s?) (s)
102 5-843 0476 0-0021 0-470 —0-0088 0-756 0-0075
103 8754 0-713 00014 0694 —0-0073 1-348 0-0013
104 11-658 0-950 0-0005 1-035 —00054 2:190 0-0001

(20) and the transition time 7, may also be found
analytically.

Once the bubble has started to rise free of the
surface the motion of the centre of the bubble
is found from (7) with values of @, @ and &
obtained from (17) or (20), whichever is appro-
priate. The integration of the equation of motion
was carried out numerically using a fourth order
Runge—Kutta procedure, with a time interval of
0-003 s. This is a straightforward calculation
which gives s and U until the breakoff criterion

is satisfied and the bubble detaches. During free
rise the trajectory can be calculated for a short
distance by omitting the surface tension term in
the equation of motion (7).

It should be noted that a geometrical correc-
tion was introduced to account for the fact that
the bubble is not actually a sphere, but is a
segment of a sphere. The bubble is a hemisphere
at zero time and it grows like a spherical sector.
Hence the theoretical curves were calculated
from
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s = a[l — (ro/a)’]?
and

U o

== [1 - (ro/a)*]™ %,

Experimental measurements of the height s
of the bubble centre are given in Figs. 6-8
together with the predictions. The agreement
at the lowest superheats is good, but at the
largest AT, some divergence is noted as the
bubble nears detachment.

M. SADDY and G. J. JAMESON

z*:’f*‘—i{}

was used where the appropriate experimental
valuefort,{ortz)wasusedineachcase. Although
it is a highly subjective matter to decide when
each of the curves for s(t) displays the change in
slope expected at the transition time, the pre-
dictions appear to be entirely reasonable.

The theoretical curves in Figs. 6-8 terminate
at the point of departure. The locus of the

10

EREEE

HEHIR
102

F16. 6. Acetic acid : measurements of the distance travelled by the centre of

the bubble for acetic acid boiling at superheats of 30 and 50°C. The

“theoretical departure line” (TDL) is the locus of the distances at which
bubble departure is predicted.

T = 121°C
) 6201fps.

€ Bi7fps
A& 1020fps,

The time at which the expansion stage ends,
7, was calculated from (14) with experimentally
determined values of A to calculate f = 4/2a%.
The time 1, is of course relative to the time f,
when the bubble starts to grow, so that in
entering the predicted transition time on Figs.
6-8, the real time

T = 123°C

O 1060 ips.
@ [400fps.
A 1650 fps.

terminal points has been drawn as the “Theoreti-
cal Departure Line” (TDL). The theoretical and
experimental departure times are compared in
Table 5, each experimental result being the
mean of four separate determinations. The
agreement is very good except for the lowest
superheats. Also shown in Table 5 are the



NUCLEATE BOILING IN SUPERHEATED LIQUIDS

107 T T T T T T T T
- 1249¢C 122°C ] 120°C N
CY e -
107 —
v
a&
142 g iy

F16, 7. Acetic acid: measurements of the distance travelled by the centre of the
bubble at superheats of 20, 40 and 60°C,

T = 120°C T = 122°C T = 124°C
O 1100 {ps. O 1100 fps. O 1100fps.
© 1500fps. € 1400fps. € 1500ips
@ 1700fps A 1600 {ps, v 1700fps.

O T Iiii§§§§ T g,x§u§ ‘gE -

e 3 % :
(h —

- #
o ‘Cﬂ;

5’

cen -

01—

00 J L Illllli H 1 llllll] 1
| 10 0 3x0?

o
3
n

F1G. 8. Water: measurements of the distance travelled by the centre of the
bubble for superheats of 26, 30 and 40°C,

T = 102°C T = 103°C T = 104°C
O 13001ps, O 12601ps. O 12501ps.
A 1630 fps. & 17001p.s, A 1625§ps.

N 1900 fps. E 18501ps. K 1820€ps.

103

1781



1782

observed bubble periods, that is, the inverse of the
frequency of bubble formation. In almost all
cases the two times are identical, indicating that
the next bubble begins to grow immediately
after the previous one has broken off. Thus in
this type of boiling the ““waiting time” is only a
very small proportion of the bubbling period.
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liquid was heated by a hot surface, and the liquid
was by no means uniform in temperature.

Omission of viscous terms

In the theoretical development, viscous effects
were entirely neglected. For the bubble growth
problem, this step can be justified [11] since the

Table 5. Bubble properties at breakoff

Departure time t,(s) Bubble
System T ag S4 U, We, — e period
(°C) (cm) {cm) {cmy/s) Theoretical Experimental  1/f(s™})
1200 0-0965 01483 680 047 0120 0180 0196
Acetic 1210 0-1041 01559 824 072 0074 0127 0127
acid 1220 01026 0-1581 8-59 0-80 0-069 0082 0-082
123-0 0-1050 0-1597 9-02 090 0-058 0062 0-069
1240 0-1126 01729 1037 1-29 0-042 0-050 0055
1020 0-1489 02293 9-86 047 0-109 0-124 0-124
Water 1030 01654 02530 12:67 0-87 0-064 3067 0-067
1040 0-1980 0-3034 1613 1-69 0-042 0046 0046

Departure diameter and frequency

Many workers have tried to set up simple
correlations to relate the bubbling frequency f
with the bubble diameter at departure D. These
works have been summarised by Ivey [5]. For
a given liquid, the correlations were generally
of the form

f =AD"

where A4 is a constant, sometimes dependent on
the physical properties, and the exponent n has
been given values between —4 and —3. Figure 9
shows experimental points from Ivey [5]
together with the experimental values of f and
D from the present work. It is apparent that there
is a completely different dependence of f on D,
the exponent n having a positive value of
approximately n = 2. This is undoubtedly due
to the difference in the heat transfer mechanism.
In our case the liquid is uniformly superheated
and heat is conducted uniformly from the
surroundings. In all the data quoted by Ivey, the

growth is determined by the rate at which heat
can be supplied to the gas-liquid interface. Thus
viscosity plays no part in determining a(t).

As far as the translational motion s{t) is
concerned, viscosity will be unimportant pro-
vided the translational Reynolds number is
sufficiently high, that is

Re = 2aUjv > 1

during the translational stage. After the bubble
has started to rise from the nucleation site,
equation (7) shows that dU/dt is of order 2g
so that

ds

U=—=~2gt.
a =

Putting t ~ 30 x 107 *s,and taking a ~ 0-2 cm,
the translational Reynolds number for the
boiling water is about 1000 (minimum). For
acetic acid we may use the velocities in Fig. 10.
These correspond to translational Reynolds
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numbers in the range 100-1000. Since these
Reynolds numbers are very large, it is concluded
that the viscous stresses are negligible in com-
parison with the inertial pressures, and may
therefore be neglected.
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Bubble velocity at departure

It is tempting to assume, in setting up a simpli-
fied model for growth and departure of single
bubbles, that the rising velocity at departure is
equal to the instantaneous rate of radial expan-
sion d. This assumption was in fact made by
Hamburger [21], but it appears that it could be
in error by an order of magnitude. Figure 10
shows the rising velocity U as a function of time
for acetic acid. The continuous line is from the
present theory, while the dashed lines are taken
from the smoothed experimental data. Up to
the end of the expansion stage U decreases.
However the results indicate that while the
bubbles are rising and still attached to the cavity,
the velocity of the centre of the bubble increases
very much over a short time interval so that at
departure the bubble is rising rapidly.

The Weber number at departure, We, =
2a4p, U} /o, has been calculated and is shown in
Table 5. The surface tension pressure (2g/a,) is
generally larger, or of the same order, as the
inertial pressure (3p U2), explaining why the
bubbles tended to remain spherical while
attached to the cavity.

CONCLUSIONS

1. A simple model is proposed for the
behaviour of a vapour bubble growing at a
nucleation site in a uniformly superheated
liquid. Two stages of growth are assumed. In
the growing stage the spherical bubble rests at
the nucleation cavity, and its rising velocity
is equal to the rate of increase of the bubble
radius. In the translation stage, buoyancy causes
the bubble to rise off the wall, and the stage
terminates when the bubble breaks free.

Using a theory based on this model the radius
and departure time of the vapour bubbles has
been predicted. The results are in good agree-
ment with the experiments especially at the
larger superheats.

2. The theoretically predicted bubble growth
rates giving the radius proportional to (time)*
are in good agreement with the experiments
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for acetic acid. However, for boiling water, the
radius appears to vary as (time)*.

3. For the type of boiling considered here,
the “waiting time” between the departure of
one bubble and the inception of the next at a
particular nucleation site, is effectively zero
except at the lowest superheats. Thus the
bubbling frequency is the inverse of the “depar-
ture time™.

4. The bubble velocity at departure was found
to be an order of magnitude higher than the
rate of radial expansion. This is because the
bubble expands like da/dtoc t7* (or 1% for
steam), whereas the translational velocity at
departure is determined by the rise of the bubble
during the transition stage under the action of
buoyancy.
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DETERMINATION DU DIAMETRE DE SEPARATION ET DE LA FREQUENCE DES
BULLES DANS L'’EBULLITION NUCLEEE DES LIQUIDES UNIFORMEMENT
SURCHAUFFES

Résumé—On présente une théorie pour décrire le mouvement des bulles de vapeur se développant a un
site de nucléation dans un liquide uniformément surchauffé. En incluant la théorie classique de la phase
de croissance sphérique les équations du mouvement de translation sont résolues permettant le caleul, en

fonction du temps, du rayon et de la position de la bulle.

Les résultats théoriques sont comparés avec 'expérience & partir de l'eau et de I'acide ac.étiquc.‘Pour
’eau le rayon de bulle varie suivant la puissance 2 du temps plutdt que 3 comme dans la théorie. tandis que
pour P'acide acétique il y a accord étroit avec la théorie. Les valeurs calculées du temps de décrochage des

bulles sont en bon accord avec 'expérience. spécialement aux plus grandes surchauffes.
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BESTIMMUNG DES ABREISSDURCHMESSERS UND DER BLASENFREQUENZ
BEIM BLASENSIEDEN IN GLEICHMASSIG UBERHITZTEN FLUSSIGKEITEN.

Zusammenfassung—Fs wird eine Theorie vorgelegt zur Beschreibung der Bewegung von Dampfblasen,
die an einer Keimstelle in einer iiberhitzten Fliissigkeit wachsen. Unter Einbeziehung der klassischen
Theorie fiir sphérisches Blasenwachstum wurden die tramslatorischen Bewegungsgleichungen geldst,
woraus sich Radius und Stellung der Blase als eine Funktion der Zeit bestimmen lassen. Die theoretischen
Ergebnisse werden mit Experimenten verglichen, an den Fliissigkeiten Wasser und Essigsiure. Fiir
Wasser zeigte sich der Blasenradius verinderlich mit der (Zeit)!, mehr als mit der (Zeit)?, wie die Theorie
verlangt, wihrend die Werte fiir Essigsdure sehr genau mit der Theorie iibereinstimmten. Die berechneten
Werte fiir die Blasenablosezeit waren in guter Ubereinstimmung mit den Versuchswerten, besonders
bei grosserer Uberhitzung,

PACYUET AMAMETPA OTPBIBA U YACTOTHI NV3BIPBKOB IIPU
NY3bIPBKOBOM KUNEHUN B OQHOPOJHO NEPEIPETHIX HUIKOCTAX

AnnoranEa—IIpencrapiieHa TeOPHS ONACAHNA [IBFIKEHMA IYSHIPLHOB Hapa, PacTymUx Ha
MeCTe BapOKACHHMA IYBHPHKOB B OJHOPOZHO meperperol mupxocty. C moMombic HIaccu-
4YecKo# Teopum pocTa cepudeckoit $ash pelIeHH YPABHEHHA IEPEXOXHOTO IBHMMCHHA,
NO3BOJIAOIINE PACCYMTATE PATIUYC U HOJIOKEHMe IIYBHIPbKA KaK QYHKUMIO BpeMEHH.
TeopeTuuecKkue pesyabTaThl CPABHHBAIOTCA C DKCIIEPHMEHTAMH HA HpUMEpe KATAIIEH BOIH
u yrcycHolt wuciorel. Halizeno, 4ro musa BoAm pajuMyc 1ysHpPBKA MEHAETCH KAk (Bpems)¥*
a He (BpeMs)l/?, KaK JaeTCH B TEOPUM, B TO BpeMA KaK JAHHLIE VIl YKCYCHOM KMCJIOTH HAXO-
RATCA B MOITHOM COOTRETCTBUM C TeopHeli. PacueTHEHe BHAYSHNA BPEMEHH OTPHIBA IIY3HPHKOR
HAXONATCA B XOpOUIeM COrJIACHM C JAAHHHMHU, B 0COGEHHOCTH NpHM GOJBIIMX NeEperpeBax.
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